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Abstract

Increasing block pricing schemes represent difficulties for applied researchers who try
to recover demand parameters, in particular, price and income elasticities. The Mexican
residential electricity tariff structure is amongst the most intricate around the globe. In this
paper, we estimate the residential electricity demand and use the corresponding structural
parameter estimates to simulate an energy efficiency improvement scenario, as suggested
by the Energy Transition Law of December 2015. The simulated program consists of a
massive replacement of electric appliances (air conditioners, fans, refrigerators, washing
machines, and lights) for more energy-efficient units. The main empirical findings are
the following: in the main counterfactual scenario, the overall residential electricity con-
sumption decreases 9.9% and the associated expenditure falls 11.3%. Additionally, the
electricity subsidy decreases 7.5 billion of Mexican Pesos per year (i.e., 403 million of
USD at the average exchange rate registered in 2017) and there is an annual cut in CO2
emissions of 3.9 million of tons.
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The Energy Transition Law was enacted in December 2015 (ETL-2015). It mandates the

Mexican Ministry of Energy to undertake technical analysis to evaluate the potential effects

that various energy efficiency measures would have on: (1) electricity subsidy reduction, (2)

household welfare (due to the expected lower electricity bills), and (3) the environment –i.e.,

air pollution and water resources.1 Although some hesitant, non-conclusive, engineering based

reports have been written, there is no economic study that evaluates the potential performance

of the proposed energy efficiency measures.

A very reduced number of papers study energy efficiency in Mexican households (Davis

et al., 2014; Gutiérrez-Mendieta, 2016; Rosas-Flores et al., 2011). In particular, Davis et al.

(2014) put under scrutiny and evaluate a large-scale appliance replacement program in Mexico

during the 2009–2012 period.2 Our paper goes beyond that historical point, and analyzes a

set of potential future policy scenarios, which are expected to happen once the prospective

regulations derived from the ETL-2015 become effective.

With the above objective in mind, we first specify and estimate a structural electricity de-

mand model for residential users in Mexico. We use the corresponding estimates of price and

income elasticities and the coefficients associated to electric appliances as well as other relevant

variables in the demand function, to simulate different energy efficiency scenarios (programs)

that go in line with the ETL-2015 requirements. Concretely, we follow the report by the Mexi-

can Energy Ministry (SENER, 2017) to assume realistic improved energy efficiency levels for

a selected group of sensible electric appliances: air conditioners, fans, refrigerators, washing

machines, and lights. Notice that, unlike most existing studies that focus only on a single

1The ETL-2015 also requires the conduction of research to evaluate the potential impact of distributed photo-
voltaic generation on the same objective variables –i.e., electricity subsidy, household welfare, and pollution
reduction. See Hancevic et al. (2017) for a complete analysis on this topic.

2Davis et al. (2014) find evidence that refrigerator replacement reduce electricity consumption by 8 percent
(only one-quarter of what was predicted by ex-ante engineering-type analysis). Moreover, they find that air
conditioning replacement actually increases electricity consumption due to a marked rebound effect. As a result,
they conclude that the program was an expensive way to reduce carbon dioxide emissions, and estimate a program
cost of over $500 per ton of CO2.
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appliance, we simulate improvements in the efficiency of five of them. We then estimate the

counterfactual electricity consumption levels, assuming each household re-optimizes its choice

after the simulated energy efficiency measures are applied. Finally, using the results of the em-

pirical exercise just described, we calculate the effects that improved energy efficiency would

have on government savings and air pollution.

The residential electricity tariff structure in Mexico is very intricate.3 There are seven

different tariff classes across the country and eight tariff regions, which are linked to average

temperatures in a subsidized scheme –i.e. high temperature zones afford lower marginal prices

and have larger consumption blocks. Each tariff class consists of increasing block prices (IBP),

which clearly invalidate any simple estimation strategy that relies on OLS or even traditional

IV methods. In the presence of IBP, consumers face a piecewise-linear budget constraint.

These pricing schemes present a serious simultaneity problem: prices and quantities consumed

are endogenously and simultaneously determined (see, for example, Reiss and White (2005),

Olmstead et al. (2007), or Olmstead (2009)). When the joint decision of marginal price and

quantity is ignored in the demand estimation, price effects are likely to be positively biased.4

Our structural model solves this endogeneity problem and allows us to identify the behavior

of residential users. By the same token, we are able to simulate counterfactual scenarios for

relevant energy efficiency programs.

Summarizing, the major contributions of this study are as follows. First, our structural

model is useful to solve endogeneity problems that are typical to IBP schemes –an issue some-

times overlooked in the literature of electricity demand estimation. Second, the works on res-

idential energy efficiency are quite scarce and very incomplete for the case of Mexico. Third,

unlike most existing studies for other countries which only focus on a single electric appliance,

we simulate improvements in the efficiency of five appliances. Finally, our structural model

3Mexico has one of the most complex tariff and subsidy structures in the world, see for example Komives et al.
(2009) and Lopez-Calva and Rosellón (2002).

4They reveal the shape of the rate schedule rather than the demand curve.
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based simulation exercise explicitly considers the re-optimization consumption decisions made

by households once the energy efficiency improvements take place, generating more realistic

outcomes.5

The main results of this paper are the following: on average, the residential electricity

consumption and the associated expenditure in the main counterfactual scenario fall 9.9% and

11.3%, respectively. There is, however, significant heterogeneity with regards of the final effect

across households. The reasons are threefold: the tariff structure differs across the country

(i.e., distinct marginal prices and different consumption blocks), the electric appliances under

study have uneven penetration levels, and their potential savings are dissimilar. AC units and

refrigerators offer the best opportunities in terms of policy outcomes: they provide the largest

consumption savings, 14.9% and 4.7%, respectively. Finally, the electricity subsidy burden

is reduced in about 403 million USD/year, and there is an annual cut in CO2 emissions of

approximately 3.9 million of metric tons.

The rest of this paper is organized as follows. Section 1 develops the structural demand

model to be estimated later. Section 2 illustrates the Mexican residential electricity sector and

presents a description of the data used in the empirical analysis. Section 3 presents the estima-

tion results. Section 4 describes the counterfactual scenarios and then presents the estimated

impacts that improved energy efficiency would have on household electricity consumption and

expenditure, the residential electricity subsidy, and the environment. Finally, section 5 con-

cludes the paper.

5One of the major limitations of our empirical model is that it does not allow us to measure any sort of rebound
effects. This limitation, however, is shared by all (structural) models that based their estimation on cross sectional
data –with no possibilities to apply a diff-in-diffs sort of approach.
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1 Structural model

In this section we present the structural model of electricity demand. The key feature of the

model is the underlying piecewise linear budget constraint that emerges in the context of IBP.

Figure 1 illustrates this point for a two-block tariff scheme. A consumer can choose a quantity

of electricity in the first block (e.g., point A in the left panel of Figure 1), where the marginal

price is p1 (right panel). Another possibility is the consumer chooses a quantity in the second

consumption block (e.g., point C in the left panel) and pays a higher marginal price p2 (right

panel). A third possibility is that the consumer chooses the quantity e1, which is exactly the

kink point. As noted by Hewitt and Hanemann (1995), though many households probably do

not know the rate structure they face, the utility maximization-based discrete/continuous choice

model can be used to estimate the demand relationship as if they did. Hence, the underlying

idea is that consumers behave as if they were making a discrete–continuous choice: they first

select the consumption block, and then, conditional on being in the selected block, they choose

the quantity of electricity.6 As it will become clear later, the idiosyncratic component of the

compound error term in the demand function, ε, allows the researcher to capture the difference

between actual consumption and that of the utility maximizing, perfectly informed household.

FIGURE 1 ABOUT HERE

The structural discrete/continuous choice (DCC) model was originally proposed by Burt-

less and Hausman (1978) and Hausman (1983) in the setting of labor supply and progressive

income taxation. In a more specific context of consumer choice, the model was developed

6An alternative interpretation is that even without having a deep knowledge of the rates they pay, households
purchase their equipment (electrical installations, lighting, heating, air conditioning, and the rest of appliances) in
such a way that average usage of the equipment places them in some specific consumption block. The long-run
approach of Dubin and McFadden (1984) introduced the choice of durables in the energy consumption decision
but without considering any sort of IBP structure. Instead, the short-run approach of our paper does not model
the equipment choice but incorporates the IBP structure explicitly. However, one can think of the short-run
block choice as being closely matched to a (probably previous) long-run equipment choice. In that sense, both
approaches are closely related.
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by Hanemann (1984). The typical electricity demand function estimated in most empirical

applications has the following log-log form:

lne jt = α ln p jt + γ lny jt +X jt β+ v jt (1)

where e jt is the quantity of electricity consumed by the household j in period t, p jt is the

marginal (or sometimes, the average) price of electricity, y jt is the household income, and

X jt is a vector of variables that includes household characteristics, dwelling characteristics,

weather variables, and several other control variables. Our model closely follows the model

proposed by Hewitt and Hanemann (1995) for water demand, later extended by Olmstead

et al. (2007). It incorporates a compounded error term v jt = ω j + ε jt . The first part of the

error, ω j, includes unobserved (to the econometrician) household preferences for electricity

consumption, whereas ε jt includes both optimization errors and the traditional measurement

error. We assume that ω j ∼ N(0,σ2
ω) and that ε jt ∼ N(0,σ2

ε). We also assume that both error

terms are independently distributed. Hence, the compounded error v jt ∼ N
(
0,σ2

ω +σ2
ε

)
.

In the environment of IBP, one must distinguish between conditional and unconditional

demand functions. The former is defined as the quantity the household consumes conditional

on being in the mth price block. This is reflected in equation (1) evaluated at the price pm and

the virtual income ŷm = y+δm, where δm = 0 if m = 1, and δm = ∑
m−1
i=1 (pi+1 − pi)ei if m > 1.

The term ei refers to the the upper limit of the block (kink point) i. 7

Each household has separate conditional demand functions, one for each block. On the

other hand, there is only one unconditional demand function that characterizes the overall con-

sumption choice. Omitting household and time subscripts, define e as the observed consump-

tion, e∗m as the optimal consumption on block m, and em as the consumption at the kink point

7Notice that the shaded area in Figure 1 represents δm evaluated at m = 2. This term constitutes the implicit
subsidy that emerges from the difference between the amount the household would pay if all electricity consumed
were charged at the marginal price and the amount it actually pays.
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m. We estimate the unconditional demand function using a Maximum Likelihood approach.

The log-likelihood function is as follows

ln L = ∑ ln


M

∑
m=1

[
1√

2πσ2
v
· exp

(
−(lne− lne∗m)

2

2σ2
v

)]
·Pr(blockm)

+
M−1

∑
m=1

[
1√

2πσ2
ε

· exp

(
−(lne− lnem)

2

2σ2
ε

)]
·Pr(kinkm)

 (2)

where

Pr(blockm) = Φ

( lnem−lne∗m
σω

−ρ
lne−lne∗m

σv√
1−ρ2

)
−Φ

( lnem−1−lne∗m
σω

−ρ
lne−lne∗m

σv√
1−ρ2

)

and

Pr(kinkm) = Φ

(
lnem − lne∗m+1

σω

)
−Φ

(
lnem − lne∗m

σω

)
Φ(.) is the normal CDF and ρ = corr(v,ω). Notice that each observation in the likelihood

function has positive probability of having occurred in any segment and any kink point of the

budget constraint. We use the estimated parameters to calculate the expected unconditional

demand, as well as unconditional price and income elasticities.

As pointed out in Olmstead (2009), there are two main advantages of structural models

of the sort described above over the traditional reduced-form approaches –either OLS or IV

models. First, structural models (potentially) produce unbiased and consistent estimates of

parameters such as price and income elasticities. Second, they are consistent with a utility-

maximizing behavior and allow the researcher to perform meaningful counterfactual analysis,

such as measurement of welfare changes due to price adjustments or other policy changes.

We are aware of the fact that there is no consensus regarding which price consumers re-

spond to. This issue is, in turn, part of a broader question of how electricity/natural gas/water

users make their decisions and how price schemes enter into their decision processes. There is
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mixed evidence favoring (disfavoring) the idea of rational consumers responding to marginal

prices in the context of IBP structures. Borenstein (2009) simply speculates with the idea that

consumers respond to expected marginal prices. Ito (2014) goes further and finds some empiri-

cal evidence that consumers tend to respond to average prices (rather than marginal or expected

marginal prices) in a small geographical area in Southern California. On the other hand, Nataraj

and Hanemann (2011) uses billing data for Santa Cruz California and finds evidence that water

consumers who face IBP do respond to changes in marginal prices. Zhang et al. (2017) ana-

lyzes residential electricity consumption in the Guangdong province in China and finds certain

evidence that households respond differently to small and large marginal price changes under

an IBP structure. Concretely, households tend to respond relatively more to larger increases in

marginal prices.

The discrepancy among the results mentioned in the previous paragraph could be, in prin-

ciple, due to some fundamental differences in the services (e.g., water and electricity satisfy

different needs), structural differences in the set of consumers analyzed (e.g., high-density ur-

ban areas versus low-density urban or rural areas), or merely, due to differences in the price

structures themselves. In any case, these pieces of evidence (both, in favor and against the use

of marginal prices in the demand estimation) cannot be directly extrapolated to all settings, pe-

riods, and regions. A case by case investigation is the most appropriate manner of proceeding.

In this study, we cannot formally test the rationality assumption made in our structural model.

Therefore, a maintained assumption is that consumers respond to marginal prices. We believe,

however, that our empirical strategy is still superior than linear OLS or IV models (often based

on weak instruments) which use average prices but systematically ignore the multi-block price

structure. Specifically, our approach addresses the endogeneity problem associated with the

joint determination of marginal price and quantity that characterizes IBP schemes.
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2 Data and context

Our main source of data is the National Survey of Household Income and Expenditure (ENIGH),

which is collected every two years by the National Institute of Statistics and Geography (IN-

EGI). Specifically, we make use of the surveys 2010, 2012 and 2014. The data collected in

these surveys provide us with certain household and dwelling characteristics –including some

information on the stock of electric appliances–, as well as monthly household expenditures.

The ENIGH sample is representative of both rural and urban areas throughout the country. In

Table 1 we provide the summary statistics for the relevant variables used in this research.

TABLE 1 ABOUT HERE

Aside socio-demographic and economic characteristics at the household level, the ENIGH

data include each household electricity expenditure which corresponds to a single billing pe-

riod. This fact allows us to avoid the problems resulting from aggregating consumption data

across billing periods, typically an entire year (see Dubin and McFadden (1984) and Reiss

and White (2005)). Based on household geographic location, we match each household in the

ENIGH with the actual electric rate schedule the household faces. For that purpose, we use tar-

iff data provided by the national electricity company that is in charge of electricity distribution

all across the country (Comisión Federal de Electricidad, CFE). We therefore invert the corre-

sponding tariff formula and retrieve the electricity consumption (in KWh) from the electricity

expenditure data provided in the ENIGH.

There are seven regular residential tariff classes (i.e., categories): 1, 1A, 1B, 1C, 1D, 1E

and 1F, which are set by the CFE based on average temperature during summer months at the

municipality level. Each tariff class consists of three or four consumption blocks. The corre-

sponding block lengths and marginal prices differ considerably across tariff classes for both

summer and winter seasons. We use the month of payment reported by household to classify
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users between summer and winter tariff structures.8 Another source of price heterogeneity

comes from the fact that we use three different cross sections: 2010, 2012, and 2014, and the

CFE adjusted block marginal prices in each of those years9 Table 2 provides an example for

the rate schedules during Summer 2014.

TABLE 2 ABOUT HERE

In addition, each of the seven IBP tariff classes has an associated annual maximum con-

sumption threshold. When the threshold is crossed, the corresponding household is automati-

cally classified as a High-Consumption User (DAC). Analogously, when the sum of consump-

tion in the last 12 months falls below the threshold, a DAC user returns to its original tariff

class. The DAC users afford a two-part tariff that is composed of a fixed charge and a uniform

marginal price, which is applicable to any consumption level and substantially more expensive

than the regular IBP tariffs mentioned before. The consumption limit to become a DAC user

differs across the seven regular tariff classes and the associated marginal price differs over CFE

tariff regions.10 Since the ENIGH data do not identify the exact tariff class each household be-

longs to, we need to make some additional assumptions in order to establish which households

are considered as DAC users in our sample.11 Concretely, for each household in our sample,

we retrieve the monthly consumption that would emerge if it were a DAC user and then com-

pare that figure with an imputed monthly limit (based on the actual annual limit). All users

who exceed the monthly threshold are considered as DAC users. That is, we assume they have

8Billing data reported in the ENIGH typically correspond to the preceding two months. November to January
are the only unequivocally winter months across the whole country, so we assumed that only bills paid between
December and February were winter-season bills. It is worth mentioning that ENIGH data is collected between
August and November, and correspondingly, 94% of households in our sample reported to have paid their bills
between July and October. It is therefore possible (and natural) to assume they afford summer tariffs.

9In particular, block lengths and the number blocks substantially changed between 2010 and 2012 for some
tariff classes.

10It is worth mentioning that the intricate Mexican tariff structure, and particularly, the DAC selection mecha-
nism, could exacerbate the uncertainty of consumers in terms of the electricity price they pay. See section 1 for
the justifications of the structural estimation method used in this work.

11Recall we recover electricity consumption from expenditure data.
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the DAC consumption computed as described before, instead of the consumption that would

result from using the regular tariff class in the calculation.

The three cross sections used in this paper add up to 52,580 household observations. Our

final sample comprises 41,780 observations 12. First, we discarded households that either were

not connected to the electricity grid (3,661) or did not have electricity meter (1,468). Second,

we dropped 2,359 households for which it was impossible to identify their actual one-period

electric bill.13 For other 3,166 cases, it was troublesome to retrieve electricity consumption

because they reported to have non-standard billing periods, paid their last bill long time ago

or reported an expenditure in electricity bellow the minimum possible outlay charged by CFE.

Lastly, we dropped 147 observations due to missing values in other sensible variables used in

our estimations.

In sum, our final sample consists of single-family households which report to pay electric

bills on a bimonthly basis, that are under a metered payment system in the year in which the

survey was collected, and that report an expenditure corresponding to a consumption level that

is greater than or equal to 25 kWh. Table 3 shows the final distribution of users and the average

consumption by tariff class, comparing the estimated values from the ENIGH data with the the

corresponding figures from the CFE official report for the year 2015. The two set of numbers

do not differ substantially, validating our empirical exercise to be presented later in this paper.

TABLE 3 ABOUT HERE

Finally, the demand equation to be estimated in the next section does not include any
12As shown in Table 1, the number of observations differ substantially among the three years. The reason

is that the ENIGH performs certain oversampling for some particular set of states, and that set of oversampled
states varies from year to year depending on the special information needs the survey tries to solve. However,
when the sample weights are used, the total number of households across surveys is quite similar. Concretely,
the percentage of total households in the original sample (respectively, in our clean final sample) are: 31.72%
(31.80%) for the year 2010, 33.82% (33.49%) for 2012, and 34.45% (34.71%) for 2014.

13This problem typically emerges in the case of multi-family households. In those cases, it is not clear whether
each family living in the home reports the share of the bill they actually pay or the total amount of the bill.
Additionally, some households report paying electric bills for more than one family, or even they report paying
more than one bill (several periods at once).
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weather variable. Although we have data from all the stations of the National Meteorolog-

ical Service, in many cases the information is lacking for several months, and in others the

records start in 2013 or even later. Then, it is impossible to even try to construct meaning-

ful summary measures –e.g., cooling/heating degree days. An imperfect alternative would be

to rely on average monthly variables at the state level. However, we believe it is inappropriate

given that in many situations weather variables differ considerably across municipalities within

the same state.

3 Electricity demand estimation

As described in section 2, our database provides us with detailed household level electricity

demand data. We exploit the substantial cross-sectional –and some time series– variation in

prices that residential users face in order to estimate the structural DCC model of Equation

(2). As a pure academic concern, we have to mention that the price schedule itself could be

endogenous: the schedule changes over time and varies across tariff classes. While these price

variation is very useful for identifying the price coefficient, using the structural model does not

solve the potential endogeneity issue per se. The schedule changes could be correlated with

unobserved demand shocks not captured in our model. There is, however, a clear fact in the

case of Mexican residential sector that supports our exogeneity assumption. Historically, in a

context of highly subsidized electricity prices, authorities have designed tariff schedules from

a (partial) cost recovery perspective –see, for example, Scott (2011). Hence, tariff schedule

changes are supply-side decisions which are not correlated with demand shocks. In addition,

the inclusion of state fixed effects and year fixed effects helps mitigate this unlikely endogeneity

problem by reducing, to some extent, the unobserved heterogeneity.

Table 4 presents the electricity demand models estimates. The first column corresponds to

the simple OLS specification, where the price variable represents the marginal price paid by
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the households. As expected, the estimated price elasticity in this model is positive, confirming

that there is a substantial simultaneity –endogeneity– problem, as explained in section 1. We

present two specifications for the DCC model. One excludes the DAC users and the other

makes use of the full sample. As can be seen, the estimates are relatively similar in both DCC

model specifications, validating the procedure used to recover the consumption of DAC users

explained in section 2. As a result, we will concentrate in the DCC full sample model for the

rest of the paper, which is our baseline specification.

TABLE 4 ABOUT HERE

In the baseline specification all the estimated coefficients are statistically significant and

have the expected sign, with the only exception being the dummy variable elderly, which is not

significant at any conventional level. The variables that represent electric appliance holdings

(i.e., water-pump, AC unit, fans, number of lights, TV sets, refrigerators, and washers) have a

positive impact on household electricity consumption. In particular, refrigerators and AC units

have sizable effects.

Table 5 presents the simulated unconditional price and income elasticities for the two DCC

models described before. We depart from Olmstead et al. (2007) and calculate demand elas-

ticities in the following manner. First, we simulate an 1% increment in all marginal prices and

re-calculate household virtual income, ŷm, at each block in order to compute a new predicted

consumption. We then compare the counterfactual predicted consumption with the original

predicted consumption. The bootstrapped average difference across households is the reported

price elasticity. We perform a similar routine to calculate the unconditional simulated income

elasticity. This way, in the baseline model the estimated unconditional elasticities are approx-

imately -.21 and .19 for price and income, respectively.14 It is worth noting that Table 5 is

14Other short-run estimates of price elasticities in the Mexican residential sector are -0.14 for the State of
Mexico (Ortı́z-Velázquez et al., 2017) and -0.16 for Nuevo León (Morales-Ramı́rez et al., 2012), the two biggest
states in terms of residential consumption. At the national scale and for the whole economy (not only the resi-
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only informative for marginal changes in prices. Situations where consumers suffer large price

jumps cannot be correctly inferred from our elasticity calculations –recall that some users shift-

ing from a regular tariff to DAC can suffer bill increases of up to 200%. Such empirical exercise

would require additional information on the observed consumption before and after the price

change occurs. Consequently, the results in Table 5 should be only applicable to relatively

small changes in prices.

TABLE 5 ABOUT HERE

4 Simulated energy efficiency scenario

In this section we simulate a massive energy efficiency program that is in line with the Energy

Transition Law of December 2015. For that purpose, we select a group of energy-intensive

appliances that are present in a significant number of Mexican households: air conditioners,

washers, fans, refrigerators, and lights. Following the report by SENER (2017), for each ap-

pliance we assume potential savings in electricity consumption by comparing known values

from the Mexican Official Norms (NOM) of Energy Efficiency –or estimated baselines– with

minimum values of energy consumption from international standards or new technologies.15

Table 6 presents the assumptions of improved energy consumption in the coming years for the

set of selected appliances.

TABLE 6 ABOUT HERE

dential sector), Caballero-Güendolain and Galindo-Paliza (2007) find -0.19 and 0.60 long-run price and income
elasticities, respectively. Notice that our estimates correspond to a short-run situation where households choose
the quantity of electricity to be consumed given the stock of appliances. In that sense, our estimated elasticities
are substantially larger than the ones obtained in previous studies. However, those estimates were obtained from
aggregate data and used time-series estimation approaches. They clearly ignore the IBP structure of the market,
which is properly incorporated in our DCC empirical model.

15In a majority of cases, the most efficient equipment is already available in Mexico, although sometimes at a
higher cost and with a substantially lower market penetration than the equipment considered at the baseline.
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In the simulations, we only use the ENIGH 2014 and take advantage of three facts. First,

this cross section distinguishes between incandescent (i.e., inefficient) and low-consumption

lamps held by the households. Second, data from 2014 are more comparable to the 2015 CFE

numbers that we use to calculate savings in the electricity subsidy and air pollution emissions.

Third, for some of the appliances considered we can establish the year of purchase. There-

fore for each household holding those appliances, we can assume more precise initial energy

efficiency levels before the corresponding improvements occur.

Concretely, in the case of refrigerators, we calculate the number of equivalent units each

household has using as reference the average efficiency level observed in 2010 (see Table 7).

E.g., a household with a refrigerator purchased in 1993 could replace it with .55 refrigerator

purchased in 2010. The assumption is that refrigerators purchased after 2010 comply with the

U.S. standards established in 2010.16 In the case of air conditioners, the ENIGH 2014 neither

provides information regarding the year of purchase nor the type of unit –i.e., window, split,

central, etc.17 Then, we assume AC units purchased prior to 2010 have an energy efficiency

of .93 (i.e., the weighted average efficiency of the previous years, see Table 7), whereas units

purchased from 2010 onwards have an efficiency factor equal to 1. To determine which units

were older/newer than 2010, we take the difference between the AC penetration rates in the

ENIGH 2014 and ENIGH 2010, and randomly allocate the new (efficient) units to cover that

difference. Unfortunately, we do not have reliable market data for washing machines and fans,

so we directly use the energy efficiency improvements scenarios presented in Table 6, assuming

the same initial energy efficiency levels for all households.

TABLE 7 ABOUT HERE
16The Mexican norm of 2012 was aligned to the 2010 US Standards. Moreover, brand and models are similar

in both countries since a significant share of the market in U.S correspond to refrigerators made in Mexico and
vice versa. It is also worth mentioning that the first minimum efficiency performing standard for refrigerators in
Mexico was established in 1994. Then, all models previous to 1993 are assumed to have the same efficiency as
the average observed in 1993.

17In 2011, however, less than 1% of AC units were central systems.
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We consider two different scenarios of improved energy efficiency that resemble massive

appliance replacement/adoption programs:

Counterfactual 1: no changes in appliance penetration rates. That means all improvements

in technology have no effect on adoption –equivalently, all the effects come from appliance

replacement.

Counterfactual 2: allows for changes in penetration rates. For the case of AC units, wash-

ing machines and refrigerators, we compare the corresponding penetration rates observed in the

ENIGH 2010 and 2014 and calculate the annual adoption rates. Then, we assume a constant

annual growth rate for a 15-year time horizon.18 For the case of fans, there is no meaningful

(i.e., statistically significant) change in penetration rates during the years 2010, 2012 and 2014.

Hence, we assume fans penetration rate remains unchanged.

Finally, since all residential users possess some (positive) number of lights, the only pos-

sibility is replacement. We therefore suppose households replace all incandescent lights with

CFL and assume a 75% improvement in lights energy efficiency.19 As a result, the simulations

for improved light efficiency is the same for Counterfatuals 1 and 2.

With all the above in mind, we now explain the simulation exercise which consists of the

following stages:

S-0 (Only applicable to Counterfactual 2) Estimate a Probit model for the probability of

having at least one AC unit (also a refrigerator and a washing machine) at home. Sort

the predicted probabilities and impute equipment adoption accordingly so as to achieve

the penetration rate that is expected in 15 years.20 21

18Our choice of 15 years is based on LBNL and IIE (2011a) and LBNL and IIE (2011b) which assume a 15-year
lifespan for both refrigerators and air conditioners.

19This is equivalent to assuming that a household replace a 60-watt incandescent lamp with a new 15-watt CFL
that provides the same illumination services.

20The results of the ancillary Probit regressions are available upon request. The regressors used in each Probit
specification are similar to the ones used in table 4 for the DCC model. Concretely, we include: income, ru-
ral, apartment, owner, number of rooms, age of head, household size, children, elderly, and variables related to
appliance holding. In addition we include state and tariff class fixed effects.

21More specific data on the characteristics of household electric appliances would make it possible to estimate

16



S-1 Compute the predicted electricity consumption for each household using the conditional

demand coefficients of our baseline specification –i.e, the DCC full-sample model in

Table 4

S-2 Recover the compounded error term, ṽ jt , as the difference between the observed con-

sumption and the predicted consumption from S-1

S-3 For each electric appliance considered separately modify the corresponding demand co-

efficient by imputing the energy efficiency starting level and the associated improvement

factor –Tables 7 and 6, respectively– and then obtain the new predicted consumption

S-4 Add the estimated error term from S-2 to the new predicted consumption of S-3

S-5 Compare the original (observed) consumption with the predicted consumption of S-4

It is worth noting that the predicted consumption derived from the DCC baseline model

(stage S-1 above) is, in fact, the expected unconditional consumption. As a result, the calcu-

lation of the predicted consumption involves a process of re-estimating the probabilities asso-

ciated to each consumption block and each kink point, and that is the case for each household

regardless of the original (observed) consumption level.

Our approach is not free of limitations. Since we do not have information on the exact

brand and model of electric appliance held by each household, we do not know the ex-ante unit

energy consumption (UEC). As mentioned before, in the case of refrigerators and AC units we

palliate this problem by using the average energy efficiency level by year presented in Table 7.

In the case of refrigerators, we go further and match this information with the date of purchase,

as reported in the ENIGH 2014. In the case of AC units, we simply impute different energy

efficiency levels contrasting the penetration rates observed in ENIGH 2010 and 2014. Finally,

a model that contemplates the adoption/replacement decision. See for example Rapson (2014) for a structural
dynamic discrete choice model of demand for air conditioners.
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for fans and washers we do not have additional information in terms of average UEC by year,

and we simply suppose the improvements in energy efficiency affect uniformly all households

holding the corresponding appliance (Table 6).

In brief, the energy efficiency improvements to be presented in the next subsection of

this work are a combination of two things: the estimates obtained from our structural DCC

model, and average-type measures based on technical reports by SENER (2017), LBNL and

IIE (2011a) and LBNL and IIE (2011b), which are matched with the ENIGH 2014 household

data, when possible. In that sense, having more detailed data on household appliance hold-

ing would substantially improve the quality of this research.22 Nevertheless, we believe our

simulation exercise represents a very valuable effort to measure the potential impacts of the

ETL-2015.

4.1 Impact on household consumption and expenditure

Table 8 presents the impact of the simulated energy efficiency scenario for each appliance indi-

vidually considered –i.e., assuming energy efficiency is improved for one appliance at a time–

when no new adoption is allowed (Counterfactual 1). The table shows the average savings per

month in terms of electricity consumption and expenditure for affected households only –i.e.,

households that have at least one unit of the appliance under analysis.23 AC units has the low-

est penetration rate (14.8%) but the highest impact on electricity consumption and expenditure

savings (14.9% and 18.8%, respectively). Refrigerators, in turn, have the largest penetration

rate (89.6%) and the second highest savings in consumption and expenditure (4.7% and 6.0%,

respectively).

22A great deal of relevant literature on residential energy efficiency is about interventions through frame field
experiments. See for example Gandhi et al. (2016) or Hahn and Metcalfe (2016) for a review on this topic. We
recognize the advantages of such experimental approaches. However, field experiments are beyond the scope of
this research and the comparisons of outcomes are meaningless given the totally different contexts.

23Recall that we do not consider alternative adoption scenarios, that is to say the current level of appliance
penetration is not affected in this counterfactual analysis.
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TABLE 8 ABOUT HERE

Table 9 presents the results of Counterfactual 2: the impact of the simulated energy effi-

ciency scenario for each appliance individually considered, but now assuming higher penetra-

tion rates. Concretely, 19.8% for AC units, 95.3% for refrigerators, and 74.6% for washers

(versus the previous 14.8%, 89.6%, and 70.4%, respectively, observed in Counterfactual 1).

The fact that a set of users purchase new appliances implies there is some additional electricity

consumption that did not exist before. In some cases, that extra consumption cannot be coun-

terbalanced by the increased efficiency of the equipment. This is particularly important for the

case of AC units. Its penetration rate increased 33% so the total consumption and expenditure

savings in Counterfactual 2 are considerably lower than those in Counterfactual 1. On the con-

trary, in the case of refrigerators and washers, current and expected penetration rates do not

differ that much. This fact explains the similarity between results presented in tables 8 and 9

for washers and refrigerators.

TABLE 9 ABOUT HERE

Table 10 displays the average savings in terms of consumption and expenditure when im-

provements in energy efficiency occur in all selected appliances simultaneously. In this case,

the results are computed considering the full 2014 sample. In that context, the final impact

on each household’s savings will depend on the corresponding stock of electric appliances.

In Counterfactual 1, the overall average consumption savings amount to 16.9 kWh per month

which in turn represents, on average, a 9.9% reduction in consumption and a 11.3% reduc-

tion in the monthly electricity bill. As can be seen, the savings differ substantially among the

different tariff classes, being 1F and DAC users the most benefited. In particular, 1F users

correspond to households living in the warmest areas of the country –i.e., the areas more sub-

sidized according to the IBP scheme. At the other end of the spectrum, tariff 1 users have, on

average, the lowest savings. The users in this category live in areas of temperate climate, and
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they are not affected by extreme temperatures or excessive humidity. Although the effects of air

conditioning and fans are captured by the corresponding coefficients in our model, other effects

explaining these results might be present as well. Since table 10 considers the effects of all ap-

pliances simultaneously, the aggregated results across tariff classes do not differ substantially

when contrasting Counterfactual 1 to Counterfactual 2.

TABLE 10 ABOUT HERE

Even though it is not the main objective of our study, it is important to analyze the distribu-

tional impacts of any prospective economic policy. This is clearly true in an emerging economy

like Mexico. For that reason, we present the results of our simulations by household income

decile in Appendix A.

In the remainder of this paper we base our analysis on Counterfactual 1 –i.e., we do not

allow for the adoption of new appliances and only focus on replacement. Notice that savings

in expenditure are systematically larger than savings in consumption (see Tables 8, 9, and 10).

In fact, that is a direct consequence of the re-estimation of probabilities associated to different

consumption blocks.24 Once the improvements in efficiency take place, in a significant number

of cases households not only consume less but also consume in a lower block, paying a lower

marginal price. Table 11 presents the percentage of households switching to a lower block once

improvements in efficiency occur. It also shows the cases where DAC users reduce consump-

tion sufficiently to return to the original tariff class. This constitute a significant advantage of

our structural model, which provide us with both more flexibility and more realism.

TABLE 11 ABOUT HERE
24That is a necessary step to recover the expected unconditional consumption levels, a point previously dis-

cussed in the text.
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4.2 Impact on government savings

The federal government collects the value-added tax (VAT) which has a 16% rate on electricity

sales. Additionally, most local governments collect a street lighting tax with rates ranging from

5% to 10%. However, the government fiscal outcome derived from the residential electricity

sector operation is a large deficit. Household electricity consumption is heavily subsidized:

more than 98% of households receive the electricity subsidy and pay, on average, only 45% of

the overall electricity cost.25 As a result, the fiscal burden associated to residential electricity

consumption has consistently increased during the last decade and currently represents more

than 0.5% of the Mexican GDP.

Table 12 displays the effect that the main energy efficiency scenario (i.e., improvements

in energy efficiency occur in all selected appliances simultaneously) would have on federal

government savings. We assume that local governments continue affording the street lighting

costs. The results in the table are calibrated using the actual number of users in each tariff

class according to the CFE official report for the year 2015. The total monthly reduction in

the net subsidy account amounts to 627 million of MXP. Although electricity consumption

differs during summer and winter months, a simple (arbitrary and imperfect) extrapolation of

this result would imply annual savings of approximately 7.5 billion of MXP –i.e., 403 million

of USD at the average exchange rate registered in 2017.

TABLE 12 ABOUT HERE

By decomposing the fiscal outcome into the distinct tariff classes, it is apparent that the bulk

of savings come from the more numerous classes (1 and 1C). On the other hand, the changes

in both consumption and composition of DAC users have a negative impact on the subsidy

account. The reason is simple: DAC users pay for electricity approximately 50% above the

25A deep discussion of whether the current overall cost of generating, transmitting, distributing and commer-
cializing electricity reflects the true opportunity cost is out of the scope of this paper.
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real supply cost, and therefore cross-subsidize users in other tariff classes.

4.3 Impact on air pollution

Electricity generation in Mexico is heavily based on fossil fuels –approximately 80% of the

total generation– and explains more than 20% of total GHG emissions. In particular, the res-

idential sector accounts for 25% of total electricity consumed in the country.26 In this sec-

tion we calculate the environmental impact of the simulated energy efficiency scenario. Our

measurement is an estimation of the long-run effects caused by the counterfactual appliance

replacement situation. Nevertheless, it does not consider the negative short-run effects that

might result from producing the new appliances needed to replace the old ones.

Our analysis relies on emission factors recently published by SENER (2017), which were

calculated assuming the typical operation of an average thermal generator.27 Table 13 presents

the environmental outcomes of the massive energy efficiency scenario.

TABLE 13 ABOUT HERE

The technologies used for electricity generation in Mexico include: coal, combined cycle,

internal combustion, turbo-gas and conventional steam (fuel-oil and gas). It is important to

note that, since 2015, the higher availability of natural gas made it possible to reduce the

consumption of more expensive and polluting fuels such as fuel-oil and diesel. Hence, the

avoided emissions of local pollutants (mainly, SO2 and NOX ) are important but not extremely

significant since the country relies more on natural gas, which in this case could be considered a

“cleaner” fuel. With regards of carbon dioxide emissions, it is interesting to put these numbers

in context. In so doing, we transform the results obtained for summer months (shown in table

26Mexico is the 13th largest GHG emitter in the world and the second in Latin America, just behind Brazil. It
contributes with 1.4% of the global GHG emissions (Damassa et al., 2015).

27Concretely, the emission factors used in our analysis are: 0.00283 kg/kWh for SO2, 0.00186 kg/kWh for
NOX, and 0.47753 kg/kWh for CO2.
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13) to annual values.28 The estimated annual cut in CO2 emissions is approximately 3.9 million

of metric tons. That figure represents 2.9% of the 2020-2030 emission reduction target for the

electricity generation sector that was committed after COP-21 held in Paris (December 2015).

To provide a monetary metric, we make an additional effort and measure emission savings.

Unfortunately, a market for emissions in Mexico does not exist. There is not a single price for

each of these air pollutants, and no global agreement has been reached. In the case of Mexico,

however, the government sets a tax of approximately 3 USD per ton of carbon emitted. In some

developed countries such as Sweden, the corresponding price could be as high as 130 USD per

ton (Ward et al., 2015). Here we assume an intermediate value of 13 USD/ton.29 As a result,

the environmental savings due to CO2 emissions reduction are 50.6 million of USD per year.

5 Conclusions and Policy Implications

In this paper we propose and estimate a structural model of residential electricity demand to

simulate the effects that a massive energy efficiency program in Mexico would have on house-

hold consumption and expenditure, government subsidies, and air pollution. The character-

istics of the tariff structure all across the country make it difficult to rely on simple reduced

form models. In that sense, our structural model, which builds on the model proposed by Olm-

stead et al. (2007) for water demand, allows us to recover sensible parameters of the electricity

demand function to simulate a meaningful counterfactual energy efficiency scenarios. The

simulated situations consist of massive replacement (and adoption) of electric appliances in

Mexican households (AC units, refrigerators, fans, washing machines, and lights). It is based

on the suggestions of a previous report by SENER (2017), which follows the requirements of

28Here the same disclaimers of section 4.2 apply: this is an imperfect and, to some extent, arbitrary exercise.
However, given the limitations of the data, it is still a valuable contribution.

29That value is similar to the average price registered in the Californian cap and trade program during the
2016–2017 period.
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the Energy Transition Law of December 2015.

The main results of our simulation when only appliance replacements are allowed (Coun-

terfactual 1) are the following: residential electricity consumption falls 9.9% and the associated

expenditure decreases 11.3%, on average. Those numbers, however, vary significantly across

consumers because the tariff structure differs substantially depending on the geographical lo-

cation of households. There are different marginal prices and different consumption blocks at

the municipality level, which are linked to the average summer temperatures. Also, the elec-

tric appliances under study have very uneven penetration levels and different potential savings.

Consequently, electricity consumption and expenditure once the energy efficiency improve-

ments take place have a variety of responses. Users under 1F and DAC tariffs are the most

benefited in terms of monetary savings (21.2% and 22.8 respectively), whereas users in the

most numerous tariff category, tariff 1, save 8.8% in their electricity bill. In terms of elec-

tric appliances, AC units and refrigerators are probably the best candidates for future policy

targets: consumers holding these appliances enjoys, on average, consumption savings of 15%

and 5%, respectively. With regards of the residential electricity subsidy, the fiscal burden could

be reduced in 7.5 billion of MXP (equivalently, 403 million of USD at the average exchange

rate in 2017). Finally, there could be an annual cut in CO2 emissions of approximately 3.9

million of tons, which represents about 2.9% of the 2020-2030 emissions reduction goal for

the electricity generation sector as it was committed in the COP-21 held in Paris.

From a distributional perspective, the outcomes of our simulations suggest that, in absolute

terms, richer households experience larger reductions in their electricity bills. However, when

changes in expenditure are normalized by household income, poorer households are the most

benefited. This result is an obvious consequence of two facts. First, the subsidy is received by

almost all households –more than 98%. Second, the (slightly) increasing relationship between

income and electricity consumption.

There are some limitations in our simulation exercise that provide incentives for further
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research on this topic. The consumer decision process regarding replacement of old appliances

and/or adoption of new technologies was not considered in our model. Instead, we simply

assume all households holding the selected appliance replace it for a more efficient unit (Coun-

terfactual 1), or also assume a higher appliance penetration rate based on a probabilistic model

(Counterfactual 2). Also, more flexibility in terms of consumer behavior would be welcome:

our empirical exercise assumes a uniform effect for all households holding the appliances under

consideration, and we only allow for minor variations in terms of the ex-ante energy efficiency

levels for AC units and refrigerators.30 Therefore, all the heterogeneity we obtain in our results

comes from the differential tariff structure, the household stock of appliances, and the imputed

energy efficiency improvement factors for each appliance. Clearly, more detailed information

on the actual household stock of appliances (e.g., price, operation and maintenance costs, UEC,

etc.) and on conservation practices followed by residential users would be a plus. Finally, the

implementation of simulations using our DCC model do not allow us to compute any sort of

rebound effects. However, this limitation will be shared by all cross-sectional approaches,

regardless of the (structural) model specification.

The discussion in the above paragraph points in the direction of suggesting a concrete piece

of advice for interested researchers and policymakers: collection of detailed consumers data

which ideally should be combined with interventions through field experiments to evaluate

concrete measures of energy-efficiency and conservation policies. In this line of thoughts, we

could think of a three-step empirical strategy. Hence, engineering-type studies constitute the

first (necessary) step to evaluate the current situation of buildings materials, facilities, equip-

ment and appliances, and the potential new technologies that could be introduced in the market.

Structural economic studies that used observational micro-data are the second (intermediate)

step. Our contribution to the literature, and more specifically, to the Mexican case, clearly be-

30An assumption that is probably unrealistic given the evidence from previous studies. See, for example, Davis
et al. (2014)
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longs to this second step. The final step is the gold standard in the energy efficiency literature:

field experiments. They should be performed to evaluate the complex interactions between

economic agents, information problems, market failures, and behavioral biases. As a result,

different policy options can be properly implemented depending on the specific context.
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Figures and Tables

Figure 1: Utility maximization under a two-block increasing price structure
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Table 1: Variable definitions and summary statistics

Variable Definition Mean Std. Dev. Min Max

Household size Number of household members at home 3.84 1.89 1 21
Children =1 if at least one child living at home 0.48 0.50 0 1
Elderly =1 if at least one person age 65 or older living at home 0.22 0.41 0 1
Age of head Age of the head of household (in years) 49.30 15.37 15 97

Rural =1 if the home is located in a rural area 0.14 0.35 0 1
Apartment =1 if the home is located in an apartment 0.06 0.24 0 1
Owner =1 if the home is owned by any member of household 0.76 0.42 0 1
Number of rooms Number of rooms, excluding kitchen and bathrooms 3.99 1.63 1 21
Number of lights Number of lights of any kind in the home 7.43 5.57 1 130
Number of TVs Number of TV sets in the home 1.58 0.95 0 14
Number of refrigerators Number of refrigerators in the home 0.90 0.35 0 5
Number of washers Number of washing machines in the home 0.71 0.48 0 4
Fans =1 if there is at least one fan in the home 0.49 0.50 0 1
AC unit =1 if there is at least one AC unit in the home 0.14 0.34 0 1
Waterpump =1 if there is at least one waterpump in the home 0.28 0.45 0 1

Income Monthly total income (in MXP)∗ 9,029 10,206 91 258,947
Electricity expenditure Monthly electricity expenditure (in MXP)∗ 219 298 21 12,922
Electricity consumption Monthly electricity consumption (in KWh) 170 161 25 2,775

Source: Own elaboration, based on ENIGH 2010, 2012 and 2014.
Number of observations: 20,603 in year 2010; 6,650 in year 2012; and 14,527 in year 2014.
∗The average exchange rate in 2014 and 2015 was 14.6 MXP/USD.
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Table 2: Residential tariff schedules for Summer 2014

Tariff 1st block 2nd block 3rd block 4th block

1 range (KWh) 0 – 75 76 – 140 ≥ 141
marginal price ($) 0.719 0.847 2.889

1A range (KWh) 0 – 100 101 – 150 ≥ 151
marginal price ($) 0.719 0.847 2.889

1B range (KWh) 0 – 125 126 – 225 ≥ 226
marginal price ($) 0.719 0.847 2.889

1C range (KWh) 0 – 150 151 – 300 301 – 450 ≥ 451
marginal price ($) 0.719 0.847 1.081 2.889

1D range (KWh) 0 – 175 176 – 400 401 – 600 ≥ 601
marginal price ($) 0.719 0.847 1.081 2.889

1E range (KWh) 0 – 300 301 – 750 751 – 900 ≥ 901
marginal price ($) 0.601 0.750 0.978 2.889

1F range (KWh) 0 – 300 301 – 1200 1201 – 2500 ≥ 2501
marginal price ($) 0.601 0.750 1.823 2.889

Source: CFE. Average exchange rate in 2014 was 13.3 MXP per USD.
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Table 3: Percentage of users and average monthly consumption by tariff
class: own calculation based on ENIGH data versus CFE users in 2015

ENIGH 2010, 2012, 2014 Official CFE data for 2015 a

Tariff % of users avg. cons. (KWh) % of users avg. cons. (KWh)

1 56.99 112.14 55.66 88.69
1A 6.73 125.90 5.93 98.48
1B 11.99 160.89 11.30 138.35
1C 14.91 252.29 15.70 228.39
1D 3.35 294.60 3.26 276.74
1E 2.83 414.64 3.34 386.23
1F 2.68 615.04 3.61 663.00
DAC 0.51 439.85 1.21 500.12

Total 100 169.63 100 157.44

Source: Own elaboration based on ENIGH 2010, 2012 and 2014, and CFE tariffs.
aCFE figures correspond to the months from June to September
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Table 4: Residential electricity demand model estimates

OLS DCC

Full sample DAC not included Full sample
Variable Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

ln(price) 0.5403∗∗∗ 0.0001 -0.2702∗∗∗ 0.0119 -0.2449∗∗∗ 0.0118
ln(income) 0.0906∗∗∗ 0.0001 0.2138∗∗∗ 0.0073 0.2164∗∗∗ 0.0066
rural -0.0439∗∗∗ 0.0001 -0.0471∗∗∗ 0.0110 -0.0471∗∗∗ 0.0102
apartment -0.0139∗∗∗ 0.0002 -0.0520∗∗ 0.0192 -0.0457∗ 0.0217
owner 0.0230∗∗∗ 0.0001 0.0599∗∗∗ 0.0096 0.0643∗∗∗ 0.0087
ln(num. of rooms) 0.0335∗∗∗ 0.0002 0.0776∗∗∗ 0.0111 0.0766∗∗∗ 0.0112
age of head 0.0074∗∗∗ 0.0000 0.0120∗∗∗ 0.0017 0.0120∗∗∗ 0.0017
(age of head)2 -0.0001∗∗∗ 0.0000 -0.0001∗∗∗ 0.0000 -0.0001∗∗∗ 0.0000
ln(household size) 0.1147∗∗∗ 0.0001 0.1952∗∗∗ 0.0099 0.1949∗∗∗ 0.0087
children -0.0106∗∗∗ 0.0001 -0.0326∗∗ 0.0111 -0.0303∗∗ 0.0112
elderly 0.0185∗∗∗ 0.0002 -0.0016 0.0143 0.0038 0.0134
waterpump 0.0043∗∗∗ 0.0001 0.0426∗∗∗ 0.0111 0.0451∗∗∗ 0.0105
num. of light bulbs 0.0014∗∗∗ 0.0000 0.0089∗∗∗ 0.0010 0.0087∗∗∗ 0.0011
num. of TVs -0.0038∗∗∗ 0.0001 0.0281∗∗∗ 0.0057 0.0269∗∗∗ 0.0052
AC unit 0.4306∗∗∗ 0.0002 0.4750∗∗∗ 0.0144 0.4724∗∗∗ 0.0149
num. of refrigerators 0.1905∗∗∗ 0.0002 0.2078∗∗∗ 0.0141 0.2059∗∗∗ 0.0143
num. of washers 0.0365∗∗∗ 0.0001 0.0624∗∗∗ 0.0096 0.0604∗∗∗ 0.0086
fans 0.1245∗∗∗ 0.0001 0.1034∗∗∗ 0.0092 0.1065∗∗∗ 0.0099
constant 0.5451∗∗∗ 0.0009 2.9445∗∗∗ 0.0785 2.8058∗∗∗ 0.0758

σε 0.1750∗∗∗ 0.0089 0.1652∗∗∗ 0.0078
σω 0.4911∗∗∗ 0.0048 0.4927∗∗∗ 0.0044
σv 0.5214∗∗∗ 0.0036 0.5197∗∗∗ 0.0035
ρ 0.3356∗∗∗ 0.0171 0.3179∗∗∗ 0.0149

Num. of observations 41,780 41,607 41,780

Significance levels: ∗∗∗p< 0.01; ∗∗p< 0.05; and ∗p< 0.10. Dependent variable is natural log of
monthly electricity consumption. For the OLS model, the variable price refers to the marginal price
at the consumption block. All models include state fixed effects and year fixed effects. Standard
errors in the DCC model are bootstrapped with 200 replications.
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Table 5: Unconditional simulated price and income elasticities

Elasticity DAC not included Full sample

Price -0.2314∗∗∗ (0.0089) -0.2124∗∗∗ (0.0091)
Income 0.1832∗∗∗ (0.0062) 0.1879∗∗∗ (0.0057)

Bootstrapped standard errors in parentheses (200 replications).
Significance levels: ∗∗∗p< 0.01; ∗∗p< 0.05; and ∗p< 0.10.

Table 6: Energy efficiency assumptions for main electric appliances in the
Mexican residential sector

Appliance Baseline Potential savings

Lighting Some incandescent lamps, 50% of CFL, and
low LED penetration 50% of LED

Refrigerators Comply with the 2012 NOM Meets MEPS in US
(potential savings: 25%)

AC units Comply with the 2012 NOM Inverter technology
(potential savings: 30%)

Fans Voluntary standard Blade and motor design
(potential savings: 30%)

Washers Comply with the 2012 NOM (potential savings: 25%)

Source: SENER and CONUEE.
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Table 7: Average energy efficiency measures and equivalent units by year for
refrigerators and air conditioner units

Refrigerators Air conditioners
Year avg. UEC equiv. units avg. EER

1993 767 0.55 1.95
1994 615 0.69 –
1995 464 0.91 –
1996 453 0.93 2.62
1997 430 0.98 2.66
1998 493 0.86 2.69
1999 475 0.89 2.73
2000 457 0.92 2.76
2001 440 0.96 2.80
2002 422 1.00 2.83
2003 405 1.04 2.87
2004 430 0.98 2.92
2005 417 1.01 2.96
2006 380 1.11 2.90
2007 359 1.17 2.94
2008 360 1.17 3.00
2009 371 1.14 3.03
2010 422 1.00 2.98

Source: UEC and EER were obtained from LBNL and IIE (2011a,b)
Notes: Residential appliance unit energy consumption (UEC) is measured in
kWh/year. The energy efficiency ratio (EER) is the ratio of cooling capacity
to power input and it is measured in watt thermal by watt electrical, Wt/We.
Higher EER values correspond to more efficient appliances. EER figures
presented are for split and window air conditioners. Averages are weighted
using market shares by class of refrigerators and AC, respectively.
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Table 8: Impact of improved efficiency on monthly consumption and expenditure by appliance
– Counterfactual 1: no change in adoption –

Light-bulbs Air Conditioners Refrigerators Washers Fans
Tariff Class Cons. Expend. Cons. Expend. Cons. Expend. Cons. Expend. Cons. Expend.

1 -2.53% -3.27% -20.91% -30.81% -4.85% -6.34% -1.42% -1.95% -3.03% -4.38%
1A -2.12% -2.96% -18.29% -29.46% -4.49% -6.37% -1.36% -2.14% -2.83% -4.36%
1B -2.18% -2.70% -15.12% -23.19% -4.38% -5.65% -1.34% -1.91% -2.91% -3.80%
1C -2.59% -2.98% -14.66% -18.07% -4.60% -5.41% -1.43% -1.74% -3.08% -3.63%
1D -2.77% -3.12% -14.13% -16.63% -4.64% -5.26% -1.46% -1.70% -3.15% -3.58%
1E -2.78% -3.05% -13.96% -15.93% -4.42% -4.99% -1.33% -1.55% -3.02% -3.40%
1F -2.37% -2.62% -14.21% -15.76% -4.55% -5.10% -1.36% -1.56% -2.95% -3.30%
DAC -12.18% -9.54% -13.46% -33.57% -2.84% -4.92% -1.24% -1.15% -2.46% -3.21%

Total -2.51% -3.13% -14.85% -18.84% -4.70% -6.01% -1.41% -1.89% -3.00% -3.93%

Affected 13,505,785 3,562,778 21,539,061 16,915,345 11,555,314
households (56.2%) (14.8%) (89.6%) (70.4%) (48.1%)

Source: own calculations based on data from ENIGH-2014 and CFE.
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Table 9: Impact of improved efficiency on monthly consumption and expenditure by appliance
– Counterfactual 2: allow for changes in adoption –

Air Conditioners Refrigerators Washers
Tariff Class Cons. Expend. Cons. Expend. Cons. Expend.

1 -6.43% -3.83% -3.46% -4.68% -0.59% -0.75%
1A -4.21% 1.28% -3.18% -4.67% -0.73% -1.22%
1B -3.79% -2.73% -2.73% -3.82% -0.78% -1.12%
1C -0.61% -0.82% -3.78% -4.51% -1.06% -1.24%
1D 0.82% 0.88% -3.36% -3.92% -0.54% -0.71%
1E -0.79% -1.58% -3.17% -3.67% -1.54% -1.76%
1F -7.98% -8.84% -4.02% -4.54% -1.74% -1.97%
DAC -9.72% -28.89% -2.84% -4.92% 1.02% 0.94%

Total -2.25% -2.37% -3.41% -4.50% -1.08% -1.46%

Affected 4,766,937 22,898,046 17,928,635
households (19.8%) (95.2%) (74.6%)

Source: own calculations based on data from ENIGH-2014 and CFE.
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Table 10: Estimated average effect of improved energy efficiency on household consumption and
expenditure per month: all appliances involved (all sample)

Initial situation Counterfactual 1: no adoption Counterfactual 2: with adoption

Consumption Expenditure Consumption Expenditure Consumption Expenditure
Tariff Users (kWh) ($) (KWh) (% change) ($) (% change) (KWh) (% change) ($) (% change)

1 14,230,594 109.4 145.4 101.8 -7.6% 131.4 -8.8% 102.8 -6.3% 132.1 -8.2%
(53.8) (128.6) (51.2) (6.0%) (115.0) (6.8%) (51.7) (8.2%) (117.6) (10.2%)

1A 1,682,899 125.9 154.8 115.8 -8.3% 134.4 -10.6% 117.7 -6.7% 137.6 -9.2%
(60.0) (142.2) (55.0) (9.2%) (115.9) (10.3%) (57.0) (11.1%) (125.6) (14.9%)

1B 2,503,712 158.9 189.3 142.8 -10.2% 159.8 -12.1% 146.7 -7.4% 166.6 -9.0%
(90.4) (196.7) (81.5) (9.0%) (159.7) (11.3%) (84.4) (12.5%) (170.0) (17.2%)

1C 3,271,032 262.0 314.2 226.6 -15.3% 259.9 -17.0% 238.7 -8.7% 274.7 -10.1%
(165.8) (342.4) (152.9) (12.3%) (288.9) (12.4%) (155.5) (20.5%) (296.9) (22.8%)

1D 752,057 291.2 327.1 249.7 -15.6% 271.1 -16.7% 264.0 -7.9% 285.5 -9.0%
(198.6) (350.3) (180.3) (12.8%) (293.6) (12.6%) (180.9) (21.4%) (295.2) (23.2%)

1E 825,343 411.3 362.1 352.0 -17.4% 300.8 -18.2% 370.3 -9.0% 315.0 -10.3%
(254.8) (299.1) (235.3) (19.0%) (247.1) (17.4%) (232.9) (26.7%) (250.9) (27.6%)

1F 671,115 615.1 558.4 517.4 -20.0% 459.9 -21.2% 530.3 -15.6% 469.3 -17.1%
(371.3) (437.6) (348.3) (15.1%) (380.9) (14.5%) (346.1) (21.7%) (383.8) (22.6%)

DAC 103,364 355.3 1751.3 309.9 -13.3% 1382.3 -22.8% 301.5 -16.1% 1375.1 -23.2%
(118.6) (521.3) (155.4) (32.6%) (719.0) (30.3%) (167.8) (37.5%) (755.4) (34.2%)

All users 24,040,116 167.7 205.2 149.7 -9.9% 176.8 -11.3% 153.9 -7.2% 181.3 -9.0%
(159.8) (252.2) (141.1) (9.9%) (213.2) (10.4%) (144.4) (13.5%) (218.9) (15.6%)

Source: own calculations based on data from ENIGH-2014 and CFE. Standard deviations are shown in parenthesis.
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Table 11: Household re-optimization process: block changes within regular
tariff classes and DAC re-categorization (% of users by tariff class)

Block changes within tariff class

Tariff from 2 to 1 from 3 to 2 from 4 to 3 Total changes

1 4.6% 5.5% 10.0%
1A 5.6% 10.0% 15.6%
1B 6.6% 8.3% 14.9%
1C 11.4% 8.7% 3.8% 23.9%
1D 7.6% 10.1% 3.9% 21.6%
1E 9.3% 3.0% 4.7% 17.0%
1F 10.2% 3.9% 0.0% 14.1%
DAC 25.0%

Source: own calculations based on data from ENIGH-2014 and CFE.

Table 12: Government savings in the proposed energy efficiency scenario
(millions of MXP per month)

CFE Subsidy reduction VAT not collected Net savings
Tariff users (1) (2) (1) - (2)

1 19,264,114 275.8 47.6 228.2
1A 2,051,397 38.0 7.1 30.9
1B 3,910,140 95.6 19.3 76.3
1C 5,432,016 226.1 49.0 177.1
1D 1,127,508 54.5 10.5 43.9
1E 1,156,322 83.0 11.8 71.1
1F 1,247,839 134.5 20.4 114.2
DAC 419,678 -90.2 24.1 -114.4

Total 34,609,015 817.2 190.0 627.3

Source: own calculations based on data from CFE and ENIGH-2014.
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Table 13: Emissions reduction in the proposed energy efficiency scenario
(metric tons per month)

Tariff CFE users SO2 NOX CO2

1 19,264,114 418 275 70,545
1A 2,051,397 58 38 9,836
1B 3,910,140 179 117 30,131
1C 5,432,016 544 358 91,794
1D 1,127,508 132 87 22,319
1E 1,156,322 194 128 32,795
1F 1,247,839 345 227 58,198
DAC 419,678 54 35 9,109

Total 34,609,015 1,924 1,265 324,726
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A Appendix: Distributional analysis of improved energy ef-

ficiency scenarios

Table 14 presents the estimated effects of improved energy efficiency by household income

decile. The first thing we should mention is that income elasticity is rather low –see table

5. But consumption is still increasing in income and, in absolute terms, policies that gener-

ate adoption or replacement of electric appliances will benefit more the non-poor households.

For instance, in Counterfactual 1 households in decile 10 reduce their expenditure 13.9%, on

average, whereas users in decile 1 only 8%. However, things are different when analyzed in

relative terms. The expenditure-income ratio in decile 1 falls from 5.4% to 5%, whereas in

decile 10 it falls from 1.3% to 1.0%. In sum, for richer households, the reduction in the elec-

tricity bill due to improved energy efficiency is larger in absolute terms, but lower in relative

terms. Such result is not surprising at all. The electricity subsidy is present in practically all

Mexican households: more than 98% of users pay some regular tariff (and not the DAC). As a

result, the exclusion error is minimized at the cost of maximizing the inclusion error.
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Table 14: Estimated average effect of improved energy efficiency on household consumption and
expenditure per month: all appliances involved (all sample)

Initial situation Counterfactual 1: no adoption Counterfactual 2: with adoption

Average Consumption Expend. Consumption Expend. Consumption Expend.
Decile income (kWh) ($) (KWh) (% change) ($) (% change) (KWh) (% change) ($) (% change)

1 1,795 96.6 97.3 89.3 -7.5% 89.3 -8.0% 90.9 -5.5% 90.9 -6.0%
(548) (76.2) (82.2) (70.1) (7.1%) (75.1) (7.3%) (71.4) (10.2%) (76.2) (10.6%)

2 3,154 124.4 128.3 112.9 -8.7% 114.9 -9.8% 115.8 -6.2% 117.9 -7.0%
(310) (103.8) (107.5) (92.6) (8.7%) (95.3) (8.9%) (95.2) (12.1%) (99.3) (12.8%)

3 4,180 137.1 143.7 124.1 -9.0% 127.9 -10.3% 127.8 -6.3% 132.5 -7.4%
(299) (111.5) (123.1) (99.6) (8.8%) (109.8) (9.1%) (104.2) (12.2%) (120.2) (13.0%)

4 5,150 143.4 153.0 129.0 -9.6% 134.7 -11.1% 132.9 -6.7% 139.4 -7.8%
(276) (121.7) (132.0) (108.5) (9.6%) (114.9) (9.9%) (112.4) (13.6%) (119.6) (14.9%)

5 6,133 158.3 173.0 142.6 -9.4% 152.2 -11.2% 147.2 -6.3% 157.7 -7.7%
(296) (141.1) (160.0) (125.7) (8.4%) (140.0) (8.7%) (129.5) (12.6%) (145.0) (14.0%)

6 7,254 161.8 192.9 145.0 -9.7% 169.1 -11.8% 149.0 -7.2% 174.2 -8.9%
(363) (138.2) (216.4) (122.6) (8.7%) (197.7) (9.4%) (126.0) (12.3%) (202.5) (13.7%)

7 8,741 185.3 216.3 165.6 -10.5% 187.4 -13.0% 171.7 -7.1% 196.0 -8.9%
(512) (173.1) (231.8) (154.7) (12.6%) (205.8) (12.9%) (159.7) (16.3%) (217.6) (18.0%)

8 10,853 192.8 240.4 171.3 -10.6% 206.2 -13.5% 176.2 -7.9% 213.0 -10.1%
(758) (173.3) (258.1) (152.2) (10.6%) (222.3) (11.2%) (155.0) (13.9%) (226.9) (15.7%)

9 14,533 218.0 286.6 191.8 -11.4% 238.4 -15.4% 197.5 -8.5% 248.5 -11.5%
(1,532) (189.2) (299.1) (165.9) (9.8%) (249.8) (11.1%) (169.6) (14.0%) (260.5) (17.7%)

10 31,642 259.7 420.0 225.7 -12.6% 331.6 -18.7% 230.8 -10.0% 344.1 -14.7%
(21,842) (237.1) (472.9) (209.4) (12.3%) (390.3) (13.9%) (211.1) (15.9%) (396.9) (21.1%)

Total 9,344 167.7 205.2 149.7 -9.9% 175.2 -12.3% 154.0 -7.2% 181.5 -9.0%
(10,781) (159.8) (252.2) (141.1) (9.9%) (212.2) (10.8%) (144.4) (13.5%) (219.1) (15.6%)

Source: own calculations based on data from ENIGH-2014 and CFE. Standard deviations are shown in parenthesis.
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